Examen: Session de Rattrapage

REMARQUES IMPORTANTES

- Les téléphones portables doivent être éteints.
- Aucun document n'est autorisé.
- Seules les calculatrices non programmables sont autorisées.
- Les exercices sont indépendants. Ils ne sont pas classés par ordre de difficulté.

Exercice 1. (6pts)

Sur la base d'un échantillon de 51 objets (choisis d'une population contenant 30 000 objets), on a mesuré une variable X caractérisée par la moyenne et la variance:

$$\bar{x} = 12.3$$
 et $s_X^2 = 0.21$

On suppose que la variable aléatoire X possède une distribution de moyenne et variance inconnues μ , σ^2 .

- 1. Proposer un estimateur sans biais pour chacun des paramètres μ et σ^2 .
- 2. Donner une estimation ponctuelle du paramètre μ .
- 3. Déterminer l'intervalle de confiance de μ , au niveau de confiance de 95%.
- 4. Sachant que $\sigma^2 = 0.19$, préciser la taille nécessaire de l'échantillon pour que la marge d'erreur de l'estimateur du paramètre μ soit inférieure à 0.02.

Hint: Le seuil $\alpha = 0.05$ et $z_{1-\alpha/2} = 1.96$.

Exercice 2. (7pts)

Le tableau suivant donne l'évolution du cours de clôture V_t , $t=1,\cdots,14$ de l'action France Telecom du 22-06-2005 au 11-07-2005 (en euros).

Date	Cours de clôture (€)	M.M.3	Date	Cours de clôture (€)	M.M.3
22-06-2005	22.97		01-07-2005	24.27	
23-06-2005	22.93		04-07-2005	24.18	
24-06-2005	22.66		05-07-2005	24	
27-06-2005	22.58		06-07-2005	24.16	
28-06-2005	22.6		07-07-2005	24.01	
29-06-2005	23.8		08-07-2005	24.53	
30-06-2005	24.16		11-07-2005	24.73	

Source: Données de France Telecom. Notons que "M.M.3" désigne les moyennes mobiles d'ordre 3.

^{*}Feuille à rendre avec la copie.

- 1. Remplir le tableau ci-dessus.
- 2. On partage la série V_t $t=1,\cdots,14$ en deux groupes

```
E_1 := \{ \text{Les valeurs du cours de clôture dans le mois 06-2005 (en euros) } 
E_2 := \{ \text{Les valeurs du cours de clôture dans le mois 07-2005 (en euros) }
```

Déterminer les points moyens G_1 et G_2 des groupes E_1 et E_2 .

- 3. En déduire l'équation de la droite d'ajustement de Mayer.
- 4. Quelle valeur peut-on prévoir pour le jour: 12-07-2005, par les méthodes suivantes ?
 - Méthode des moyennes mobiles d'ordre 3.
 - Méthode de Mayer.
- 5. Proposer un critère pour comparer la performance des deux méthodes en question.

Exercice 3. (7pts)

Douze personnes sont inscrites à une formation. Au début de la formation, ces stagiaires subissent une épreuve A notée sur 20. A la fin de la formation, elles subissent une épreuve B de niveau identique. Les résultats sont donnés dans le tableau suivant :

Epreuve A	3	4	6	7	9	10	9	11	12	13	15	4
Epreuve B	8	9	10	13	15	14	13	16	13	19	6	19

- 1. Préciser la nature des variables étudiées.
- 2. Représenter graphiquement la série d'observations (A_i, B_i) de la variable couple (A, B).
- 3. Calculer les moyennes \bar{a} et \bar{b} des séries d'observations A_i , B_i en question.
- 4. Calculer le coefficient de corrélation linéaire entre A et B, et interpréter le résultat.
- 5. On supprime les deux derniers stagiaires.
 - a) Déterminer l'équation de la droite Δ de régression linéaire de B en fonction de A, dans ce cas.
 - b) Préciser la proportion de variance expliquée par ce modèle de régression linéaire.